
Comet

version 1.1

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 Comet User’s Guide 1

1.1 Introduction . 1

1.1.1 Introduction . 1

1.1.2 Architecture . 1

1.1.3 Prerequisites . 1

1.1.4 Where to Find More Information . 2

1.2 Comet . 2

1.2.1 Basic COM from Erlang . 2

1.2.2 How comet works . 2

1.2.3 Using objects and interfaces . 3

1.2.4 Using the dispatch interface . 3

1.2.5 Other functions . 3

1.2.6 Generating stub modules . 4

1.3 Examples . 4

1.3.1 Comet Examples . 4

1.3.2 Requirements . 4

1.3.3 Example One, Opening a Browser to a Specific URL 5

1.3.4 Example Two, Making a Graph in Excel . 6

1.3.5 Example three, calling a COM object in C++ 10

1.3.6 Example four, using ActiveX Data Objects from Erlang 10

1.4 Comet Release Notes . 13

1.4.1 Comet 1.1.1 . 13

1.4.2 Comet 1.1 . 13

1.4.3 Comet 1.0 . 13

2 Comet Reference Manual 15

2.1 comet . 19

2.2 com gen . 20

2.3 erl com . 23

iiiComet

List of Tables 33

iv Comet

Chapter 1

Comet User’s Guide

Comet is an Erlang-to-COM port driver. It enables Erlang to call COM objects under Windows.

1.1 Introduction

1.1.1 Introduction

In Windows, many applications and libraries call each other using COM. COM, short for Component
Object Model, is Microsoft’s technique for component software and distributed computing. COM
enables code to be called across language boundaries. For instance, a Visual Basic program can call
modules and classes written in C++, and vice versa.

Comet is a module for Erlang, that enables Erlang programs to call COM objects.

This document describes Comet and its possible applications. However, some knowledge of COM is
assumed. Please check the list of recommended reading below for tips on books on COM.

1.1.2 Architecture

Comet is a module that consists of two parts: a genserver, called erl com, that implements the Erlang
part of Comet, and a port driver erl com drv, that implements the C glue. The port driver is also
available as a port program with the same API from Erlang.

Since COM is a Windows-specific technology, Comet is only available on Windows.

Erlang can only call other COM-servers, Comet does not currently provide for creating COM-objects
written in Erlang. This might be included in later versions. Thus Comet is a COM-client only.

1.1.3 Prerequisites

Basic knowledge of COM and Windows programming is assumed.

1Comet

Chapter 1: Comet User’s Guide

1.1.4 Where to Find More Information

More information on COM can be found in:

1. Microsoft documentation http://www.microsoft.com/com/1

2. Inside COM, by Dale Rogerson (ISBN: 1572313498)

3. Essential COM, by Don Box (ISBN: 0201634465)

4. Mastering COM and COM+, by Rofail and Shohoud (ISBN: 0782123848)

1.2 Comet

1.2.1 Basic COM from Erlang

In COM, there are interfaces. An interface is a handle to an object. Physically it consists of a pointer to
an object with a method table.

Interfaces in COM are represented as a tuple in Erlang. This tuple should be considered oblique data.

There is a standard set of types in COM. These types can be converted to and from Erlang by the port
program. (It is actually converted from the Erlang binary format.) Table 1 shows the types in Erlang
and their corresponding COM type.

integer VT I4, 32-bits integer

string VT STR, unicode string

atom no type, however the two atomstrue and false are converted to VT BOOL, the
COM Boolean type

float VT R8, 64-bits floating point

Table 1.1: Erlang Types and Their Corresponding COM Type

However, there are fewer types in Erlang than in COM, so some types overlap. When calling a COM
function, the parameters types must match exactly, since COM is strongly typed. Comet uses a special
notation for the conversion of Erlang types to COM types, a tuple with an atom followed by the value,
e.g. fvt i2, 12g.

The comet application consists of two parts: the gen server module erl com, that implements the
Erlang API for comet, and the port (driver or program) erl com drv, that communicates with COM
objects. The port is never called directly, only through API functions in erl com.

There is also a module com gen that can generate Erlang APIs for COM object, by querying their type
libraries.

1.2.2 How comet works

TBD
1URL: http://www.microsoft.com/com/

2 Comet

1.2: Comet

1.2.3 Using objects and interfaces

TBD

1.2.4 Using the dispatch interface

The dispatch or IDispatch interface is a way for scripts to call functions. It is used by Visual Basic,
JScript and other scripting language. It is sometimes referred to as the late-binding call interface.

This way to call COM objects shows off its VB heritage. An interface has methods and properties. A
property is really two methods: put property and get property.

In the erl com server, there are three functions for calling an IDispatch-interface.

invoke(Interface, Method, Parameterlist) Invokes a normal COM method. A list of
out-parameters are returned, or, if there is a
retval-parameter, it is returned.

property put(Interface, Method, Parameterlist,

Value)

Calls a COM method with the propput-
attribute. An extra argument, after the Pa-
rameterlist, contains the property value to
set. (Which really is just a parameter to the
function.) If the property does not have pa-
rameters, the parameterlist might be omit-
ted, but a value must always be provided.

property put ref(Interface, Method,

Parameterlist, Value)

Sets a property value REF. See COM docu-
mentation for more info.

property get(Interface, Method, Parameterlist) Calls a COM method with the propget-
attribute. The value of the property is re-
turned. If the property does not have param-
eters, the parameterlist might be omitted.

Table 1.2: Functions for dispatch interfaces

The parameter Method above, is either a string or a member ID.

Examples of using this:

erl com:invoke(Obj, "Navigate", ["www.erlang.org"])

erl com:property put(Obj, "Visible", true)

Here we assume that Obj is an IWebBrowser interface for an Internet Explorer program.

Calling methods this way is OK for testing things in an Erlang shell, but it’s not very practical and does
not make for readable code. A much simpler way of using COM objects is to generate them first and
then call them.

1.2.5 Other functions

TBD

3Comet

Chapter 1: Comet User’s Guide

1.2.6 Generating stub modules

The com gen erlang module, has functions for generating stub modules for COM interfaces and classes.

In COM, type information is compiled from an IDL-file, and stored in a “type library”. This is a
collection of type information, that is readable (via COM) from erlang.

TBD

1.3 Examples

Detailed examples on how to use Comet

1.3.1 Comet Examples

This chapter describes in detail som examples on Comet usage; the simpler ones first and the most
advanced last.

Four examples are given:

� Browsing to a specified address

� Opening Excel, inserting some data, showing a graph

� Calling a function in a C++ library

� Using ADO (ActiveX Data Objects) to read and update data from an SQL Server database.

Source code for these are included in the distribution, in the directory comet/examples .

The abbreviations VB and VBA are used for Visual Basic and Visual Basic for Applications.

1.3.2 Requirements

The first example requires that Internet Explorer 4.0 or later is installed.

Example two requires Excel from Office 97 or Office 2000.

The last example can be run as it is, but to modify the COM-library, Visual C++ 5.0 or later is required.

4 Comet

1.3: Examples

1.3.3 Example One, Opening a Browser to a Specific URL

This example shows how to open a browser (Internet Explorer), and navigate through it to a specific
address.

To get the COM interface for the browser, we use a tool such as OLE/COM Object Viewer, which is
included in Microsoft’s Windows Platform SDK, Visual C and Visual Basic.

Checking the interface for Internet Explorer, we find a couple of things that we need. First, we need the
class ID. Then we need the name and parameter list of the funcions and properties required to create
and use a browser.

Since starting a browser is not a performance-critical task, we can use the slowest and safest way to do it
from Erlang. This means starting the erl com as a port process, and using the IDispatch interface to
access Internet Explorer.

Although Internet Explorer provides a dual interface, (that is an interface with both a method table and
an IDispatch-interface), the IDispatch interface is safer and slower. Giving it a bad parameter list,
returns an error code, rather than a core dump.

To use a COM object, we have to start the server (which starts the port) and start a thread. Then we
can create the object, and do what we want with it.

To be able to use constants, we put the source in a module, rather than call it interactively in the Erlang
shell.

%% an example of using COM with generated code
%%
%% the code was generated with these commands:
%% erl_com:get_program(a),
%% erl_com:gen_typelib({a, "c:\program files\microsoft office\office\mso97.dll"}),
%% erl_com:gen_typelib({a, "c:\program files\microsoft office\office\excel8.olb"}, dispatch),
%% erl_com:gen_interface({a, "c:\program files\microsoft office\office\excel8.olb"},
%% "_Application", dispatch, [{also_prefix_these, ["application"]}, {prefi

-module(xc_gen).
-author(’jakob@erix.ericsson.se’).

-include("erl_com.hrl").
-include("xlChartType.hrl").
-include("xlChartLocation.hrl").
-include("xlRowCol.hrl").

-compile(export_all).

to_cell_col(C) when C > 26 ->
[C / 26 + 64, C rem 26 + 64];

to_cell_col(C) ->
[C+64].

populate_area(E, _, _, []) ->
ok;

populate_area(E, Row, Col, [Data | Resten]) ->
Cell= to_cell_col(Col)++integer_to_list(Row),
Range= xapplication:range(E, Cell),
range:value(Range, Data),
erl_com:release(Range),

5Comet

Chapter 1: Comet User’s Guide

populate_area(E, Row+1, Col, Resten).

make_graph(E, Row1, Col1, Row2, Col2, Title) ->
Charts= xapplication:charts(E),
NewChart= charts:add(Charts),
erl_com:release(Charts),
0= chart:chartType(NewChart, ?xlPieExploded),
Chart= chart:location(NewChart, ?xlLocationAsObject, "Sheet1"),
erl_com:release(NewChart),
R= to_cell_col(Col1)++integer_to_list(Row1)++":"

++to_cell_col(Col2)++integer_to_list(Row2),
Range= xapplication:range(E, R),
[]= chart:setSourceData(Chart, Range, ?xlColumns),
0= chart:hasTitle(Chart, true),
ChartTitle= chart:chartTitle(Chart),
0= chartTitle:caption(ChartTitle, Title),
erl_com:release(Range),
erl_com:release(Chart),
erl_com:release(ChartTitle),
ok.

sample1() ->
{ok, _Pid}= erl_com:get_program(xc_gen),
E= erl_com:create_dispatch(xc_gen, "Excel.Application", ?CLSCTX_LOCAL_SERVER),
0= xapplication:visible(E, true),
Wb= xapplication:workbooks(E),
W= workbooks:add(Wb),
erl_com:release(W),
erl_com:release(Wb),
populate_area(E, 1, 1, ["Erlang", "Java", "C++"]),
populate_area(E, 1, 2, ["25", "100", "250"]),
ok= make_graph(E, 1, 1, 3, 2, "Bugs in source code, by language"),
E.

The internet explorer application has a dispatch interface, that implements the IWebBrowser interface.
There are a lot of methods. We use the Navigate method to open a specific URL, and the Visible
property to show the browser. (By default, the browser is created invisible, like other Microsoft
programs used from COM.)

1.3.4 Example Two, Making a Graph in Excel

In this example, we also start an instance of the Excel application. We use the program name
“Excel.Application”, which can be used instead of a class ID. This selects the Excel that is installed;
Excel from Office 97 or Office 2000.

The easiest way to do anything with Excel is to first record a VBA macro. The resulting VBA macro is
shown in figure 1. This macro is manually rewritten a bit to make it simpler. We try it out, and the
result is shown in figure 2.

Now, to perform this into Erlang, we have two choices: either we can call the VB code as a subroutine
using COM from Erlang, or we can reimplement the VB macro in Erlang. Since this is a user’s guide,
we of course choose the latter.

6 Comet

1.3: Examples

To get to the interfaces, we use OLE/COM Object Viewer, and get the IDL for Excel. There is an Excel
type library available. We do not want all of it because it is huge. We just pick the needed interfaces,
which are Application, Graph and Range. We also extract some enums, which are constants used
for parameters in the COM calls.

There are some tricky issues when calling COM from Erlang

First, VB handles releasing of COM interfaces implicitly. Erlang and COM does not do this, so we have
to make calls to erl com:release/1 for every interface we get. For instance, every Range we get from
the property Application.Range, has to be released. We do this in the helper function
data to column/3.

Secondly, when an interface is returned, it is returned as an integer. This integer is actually an index into
an interface array contained in the erl com drv port program. When calling functions in erl com, we
have to provide both the pid and the thread number, so there is a helper function
erl com::package interface/2, that repackages the interface integer with given thread or other
interface. When giving the interface as a parameter to a COM function (through erl com:call or
erl com:invoke), however, the interface should be converted to a pointer, which is done with the tuple
notation for COM types: fvt unknown, Interfaceg.

When Excel is started, we execute a series of Excel commands to enter data and to draw a graph. The
commands are translated from a VBA macro that we got using Excel’s standard macro recorder.

We use some constants that are needed for the Excel commands. These are taken from Visual Basic’s
code generation from the Excel interfaces. Although these can be fetched from Excel using COM,
erl com does not yet support this. (Future releases will include code-generation that will greatly
simplify using big COM-interfaces.

-module(xc).
-author(’jakob@erix.ericsson.se’).

-include("erl_com.hrl").

%% enum XlChartFormat
-define(XlPieExploded, 69).
-define(XlPie, 5).

%% enum XlChartLocation
-define(xlLocationAsNewSheet, 1).
-define(xlLocationAsObject, 2).
-define(xlLocationAutomatic, 3).

%% enum XlRowCol
-define(xlColumns, 2).
-define(xlRows, 1).

-export([populate_area/4, f/3, make_graph/6, sample1/0]).

to_cell_col(C) when C > 26 ->
[C / 26 + 64, C rem 26 + 64];

to_cell_col(C) ->
[C+64].

populate_area(E, _, _, []) ->

7Comet

Chapter 1: Comet User’s Guide

ok;
populate_area(E, Row, Col, [Data | Resten]) ->

Cell= to_cell_col(Col)++integer_to_list(Row),
io:format(" ~s ~n ", [Cell]),
N= erl_com:property_get(E, "range", [Cell]),
Range= erl_com:package_interface(E, N),
erl_com:property_put(Range, "Value", Data),
erl_com:release(Range),
populate_area(E, Row+1, Col, Resten).

f(E, _, []) ->
ok;

f(E, Startcell, [Data | Resten]) ->
{R, C}= Startcell,
Cell= "R"++integer_to_list(R)++"C"++integer_to_list(C),
io:format(" ~p ~n ", [Cell]),
f(E, {R+1, C}, Resten).

make_graph(E, Row1, Col1, Row2, Col2, Title) ->
Charts = erl_com:package_interface(E, erl_com:property_get(E, "Charts")),
erl_com:invoke(Charts, "Add"),
ActiveChart= erl_com:package_interface(E, erl_com:property_get(E, "ActiveChart")),
erl_com:property_put(ActiveChart, "ChartType", {vt_i4, ?XlPieExploded}),
erl_com:invoke(ActiveChart, "Location", [{vt_i4, ?xlLocationAsObject}, "Sheet1"]),
Chart= erl_com:package_interface(E, erl_com:property_get(E, "ActiveChart")),
R= to_cell_col(Col1)++integer_to_list(Row1)++":"

++to_cell_col(Col2)++integer_to_list(Row2),
io:format(" ~s ~n ", [R]),
Range= erl_com:property_get(E, "Range", [R]),
erl_com:invoke(Chart, "SetSourceData", [{vt_unknown, Range}, {vt_i4, ?xlColumns}]),
erl_com:property_put(Chart, "HasTitle", true),
ChartTitle= erl_com:package_interface(E, erl_com:property_get(Chart, "ChartTitle")),
erl_com:property_put(ChartTitle, "Caption", Title).

%erl_com:release(erl_com:package_interface(E, Range)),
%erl_com:release(ActiveChart),
%erl_com:release(Charts).

sample1() ->
{ok, Pid}= erl_com:start_process(),
T= erl_com:new_thread(Pid),
E= erl_com:create_dispatch(T, "Excel.Application", ?CLSCTX_LOCAL_SERVER),
erl_com:property_put(E, "Visible", true),
Wb= erl_com:package_interface(T, erl_com:property_get(E, "Workbooks")),
erl_com:invoke(Wb, "Add"),
populate_area(E, 1, 1, ["Erlang", "Java", "C++"]),
populate_area(E, 1, 2, ["25", "100", "250"]),
make_graph(E, 1, 1, 3, 2, "Programfel i Ericssonprojekt, sprkuppdelning"),
{T, E, Wb}.

Now, from version 1.1 of comet, there is a possibility to generate code stubs that wrapps the erl com
calls in shorter and clearer names. If we use erl com:gen typelib(X, dispatch) to generate files,
where X is an interface for an Excel object, we have a more readable form for the above:

8 Comet

1.3: Examples

%% an example of using COM with generated code
%%
%% the code was generated with these commands:
%% erl_com:get_program(a),
%% erl_com:gen_typelib({a, "c:\program files\microsoft office\office\mso97.dll"}),
%% erl_com:gen_typelib({a, "c:\program files\microsoft office\office\excel8.olb"}, dispatch),
%% erl_com:gen_interface({a, "c:\program files\microsoft office\office\excel8.olb"},
%% "_Application", dispatch, [{also_prefix_these, ["application"]}, {prefi

-module(xc_gen).
-author(’jakob@erix.ericsson.se’).

-include("erl_com.hrl").
-include("xlChartType.hrl").
-include("xlChartLocation.hrl").
-include("xlRowCol.hrl").

-compile(export_all).

to_cell_col(C) when C > 26 ->
[C / 26 + 64, C rem 26 + 64];

to_cell_col(C) ->
[C+64].

populate_area(E, _, _, []) ->
ok;

populate_area(E, Row, Col, [Data | Resten]) ->
Cell= to_cell_col(Col)++integer_to_list(Row),
Range= xapplication:range(E, Cell),
range:value(Range, Data),
erl_com:release(Range),
populate_area(E, Row+1, Col, Resten).

make_graph(E, Row1, Col1, Row2, Col2, Title) ->
Charts= xapplication:charts(E),
NewChart= charts:add(Charts),
erl_com:release(Charts),
0= chart:chartType(NewChart, ?xlPieExploded),
Chart= chart:location(NewChart, ?xlLocationAsObject, "Sheet1"),
erl_com:release(NewChart),
R= to_cell_col(Col1)++integer_to_list(Row1)++":"

++to_cell_col(Col2)++integer_to_list(Row2),
Range= xapplication:range(E, R),
[]= chart:setSourceData(Chart, Range, ?xlColumns),
0= chart:hasTitle(Chart, true),
ChartTitle= chart:chartTitle(Chart),
0= chartTitle:caption(ChartTitle, Title),
erl_com:release(Range),
erl_com:release(Chart),
erl_com:release(ChartTitle),
ok.

sample1() ->

9Comet

Chapter 1: Comet User’s Guide

{ok, _Pid}= erl_com:get_program(xc_gen),
E= erl_com:create_dispatch(xc_gen, "Excel.Application", ?CLSCTX_LOCAL_SERVER),
0= xapplication:visible(E, true),
Wb= xapplication:workbooks(E),
W= workbooks:add(Wb),
erl_com:release(W),
erl_com:release(Wb),
populate_area(E, 1, 1, ["Erlang", "Java", "C++"]),
populate_area(E, 1, 2, ["25", "100", "250"]),
ok= make_graph(E, 1, 1, 3, 2, "Bugs in source code, by language"),
E.

To use the code above, we have to generate Erlang stub modules for a lot of interfaces. Checking with
the OLE/COM viewer, we see that Excel uses both it’s own type library, and a common library for
office programs. We generate these. We use an object application a lot, however that name is used by
another module in OTP. So we generate specifically the “ Application” interface, with a prefix “x”, to
easily use it. Now the interface for “ Application” is in the module xapplication.

When we use the functions, we take care to match every call. This is to catch errors early, remember
erl com returns errors in a fcom error, ...g tuple. Successful invoke and property put returns []
and 0, respectively.

1.3.5 Example three, calling a COM object in C++

To be done.

1.3.6 Example four, using ActiveX Data Objects from Erlang

ActiveX Data Objects, or ADO for short, is Microsoft’s new components for data access, using either
Ole-DB or ODBC. They provide a nice COM wrapper for accessing SQL databases such as SQL
Server, Oracle and Sybase.

The following code snippets uses generated code to access data on SQL server, in the example database
“PUBS”. For information on ADO, refer to Microsoft documentation.

-module(ado).
-author(’jakob@erix.ericsson.se’).

-compile(export_all).
%%-export([Function/Arity, ...]).

%% these are generated from ADO:
%% erl_com:create_object(Ado, "ADODB.Connection"), com_gen:gen_typelib(Ado).

-include("cursorlocationenum.hrl").
-include("cursortypeenum.hrl").
-include("locktypeenum.hrl").
-include("commandtypeenum.hrl").

select_sample() ->
Sql= "select * from titles order by title",
select_sample(Sql).

10 Comet

1.3: Examples

select_sample(Sql) ->
{ok, Pid1} = erl_com:get_program(a),
C= connection_class:create_object(a),
%% Load the Driver and connect to the database.
Strconn= "Provider=SQLOLEDB;Initial Catalog=pubs;"

"Data Source=eomer;User Id=sa;Password=;",
connection:open(C, Strconn),
%% do the select
Rs= connection:execute(C, Sql),
%% get Fields
Fields= recordset:fields(Rs),
N= fields:count(Fields),
%% get names
Fl= lists:map(fun(J) -> fields:item(Fields, J) end, lists:seq(0, N-1)),
%% get each field
Nl= lists:map(fun(F) -> field:name(F) end, Fl),
%% read values
Vl= read_all(Rs, Fl, recordset:eOF(Rs), [Nl]),
erl_com:release(Fields),
erl_com:release(Rs),
erl_com:release(C),
Vl.

read_row(Fl) ->
lists:map(fun(F) -> field:value(F) end, Fl).

%% read all values
read_all(Rs, Fl, true, Acc) ->

lists:reverse(Acc);
read_all(Rs, Fl, false, Acc0) ->

Acc= [read_row(Fl) | Acc0],
recordset:moveNext(Rs),
%% limit to 100 records
read_all(Rs, Fl, (length(Acc) > 100) or recordset:eOF(Rs), Acc).

map2_(F, [], _, Acc) ->
Acc;

map2_(F, _, [], Acc) ->
Acc;

map2_(F, [A0 | A], [B0 | B], Acc0) ->
Acc= [F(A0, B0) | Acc0],
map2_(F, A, B, Acc).

map2(F, A, B) ->
lists:reverse(map2_(F, A, B, [])).

map3_(F, [], _, _, Acc) ->
Acc;

map3_(F, _, [], _, Acc) ->
Acc;

map3_(F, _, _, [], Acc) ->

11Comet

Chapter 1: Comet User’s Guide

Acc;
map3_(F, [A0 | A], [B0 | B], [C0 | C], Acc0) ->

Acc= [F(A0, B0, C0) | Acc0],
map3_(F, A, B, C, Acc).

map3(F, A, B, C) ->
lists:reverse(map3_(F, A, B, C, [])).

insert_sample() ->
%% Start a new COM server. The application must already be started.
{ok, Pid1} = erl_com:get_program(a),
%% Load the Driver and connect to the database, make recordset directly
Strconn= "Provider=SQLOLEDB;Initial Catalog=pubs;Data Source=eomer;User Id=sa;Password=;",
Strsql= "select * from titles",
Rs= recordset_class:create_object(a),
recordset:open(Rs, Strsql, Strconn, ?adOpenForwardOnly, ?adLockOptimistic),
%% Add a new row
recordset:addNew(Rs),
Fields= recordset:fields(Rs),
N= fields:count(Fields),
%% Get each field
Fl= lists:map(fun(J) -> fields:item(Fields, J) end, lists:seq(0, N-1)),
Nl= lists:map(fun(F) -> field:name(F) end, Fl),
%% Fields: title_id, title, type, pub_id, price, advance, royalty, ytd_sales, notes, pubdate
%% Have some nice values
FVals = ["TC8789", "Kul med prolog?", "UNDECIDED ", "1389", 8.99,

8000, 10, 2000, "Det r inte S kul med Prolog.", 0],
%% Set values of new row
map3(fun(F, V, Na) ->

io:format("name ~s value ~p ~n", [Na, V]),
[]= field:value(F, V) end, Fl, FVals, Nl),

%% "Commit" to the DB
recordset:update(Rs).

delete_sample(Title_id) ->
{ok, Pid1} = erl_com:get_program(a),
%% Load the Driver and connect to the database, create recordset directly
Strconn= "Provider=SQLOLEDB;Initial Catalog=pubs;Data Source=eomer;User Id=sa;Password=;",
Strsql= "select * from titles",
Filter= "title_id=’" ++ Title_id ++ "’",
Rs= recordset_class:create_object(a),
[]= recordset:open(Rs, Strsql, Strconn, ?adOpenForwardOnly, ?adLockOptimistic),
%% Set the filter, required for delete (I think?)
[]= recordset:filter(Rs, Filter),
%% Delete
[]= recordset:delete(Rs),
%% And "commit"
[]= recordset:update(Rs).

ADO is a nice way of accessing databases from a windows platform. The example shows both reading
and changing data on the database. The code is more or less taken from Microsoft’s documentation on
ADO.

12 Comet

1.4: Comet Release Notes

1.4 Comet Release Notes

Notes for Comet

1.4.1 Comet 1.1.1

Improvements and New Features

� Small improvements on wrapper code generation.

� Support for enumeration interfaces.

Known Bugs and Problems

No way to avoid context switches (in Win32) when calling COM-object. This might be addressed in
future versions.

Some types from code generations are wrong, and needs manual adjustment (i.e. Word 2000).

1.4.2 Comet 1.1

New release.

Greatly improved everything.

Comet can now be run as a port program and/or a port driver. The same API works in both.

Now generates Erlang wrapper modules around COM objects and interfaces, using information in
COM TypeLibs.

Examples include controlling Internet Explorer, using Excel and accessing data through ADO.

1.4.3 Comet 1.0

New application.

13Comet

Chapter 1: Comet User’s Guide

14 Comet

Comet Reference Manual

Short Summaries

� Application comet [page 19] – The COM client for Erlang

� Erlang Module com gen [page 20] – Comet code generator from COM type
libraries.

� Erlang Module erl com [page 23] – Comet gen server with API to Erlang COM
client.

comet

No functions are exported.

com gen

The following functions are exported:

� gen enum(ComInterface, EnumName) -> fErlfilename, Hrlfilename, okg
[page 21] Generate an enum to a module and a header.

� gen enum(ComInterface, EnumName, Options) -> fErlfilename,
Hrlfilename, okg
[page 21] Generate an enum to a module and a header.

� gen coclass(ClassName, ClsID) -> fok, Filenameg
[page 21] Generate a file for a COM class.

� gen coclass(ClassName, ClsID, Options) -> fok, Filenameg
[page 22] Generate a file for a COM class.

� gen interface(ComInterface, VirtualOrDispatch) -> fok, Filenameg
[page 22] Start or get a named server.

� gen interface(ComInterface, VirtualOrDispatch, Options) -> fok,
Filenameg
[page 22] Start or get a named server.

� gen interface(ComInterface, IntfName, VirtualOrDispatch) -> fok,
Filenameg
[page 22] Start or get a named server.

� gen interface(ComInterface, IntfName, VirtualOrDispatch, Options) ->
fok, Filenameg
[page 22] Start or get a named server.

15Comet

Comet Reference Manual

erl com

The following functions are exported:

� start program() -> fok, Pidg
[page 24] Start the server and start a port program (in a separate process).

� start program(ServerName) -> fok, Pidg
[page 24] Start the server and start a port program (in a separate process).

� get program(ServerName) -> fok, Pidg
[page 24] Start the server and start a port program (in a separate process).

� start driver() -> fok, Pidg
[page 24] Start the server and load a port driver.

� start driver(ServerName) -> fok, Pidg
[page 24] Start the server and load a port driver.

� get driver(ServerName) -> fok, Pidg
[page 24] Start the server and load a port driver.

� get or start(Name, ProgramFlag) -> fok, Pidg
[page 25] Start or get a named server.

� stop(ServerRef) -> ok
[page 25] Stop the server.

� new thread(ServerRef | PrevComThread) -> ComThread
[page 25] Create a new Windows thread for COM execution.

� end thread(ComThread) -> ok
[page 25] End a Windows thread in Comet.

� create object(ThreadOrServer, Class) -> ComInterface
[page 26] Create a COM object.

� create object(ThreadOrServer, Class, Ctx) -> ComInterface
[page 26] Create a COM object.

� create object(ThreadOrServer, Class, RefID) -> ComInterface
[page 26] Create a COM object.

� create object(ThreadOrServer, Class, RefID, Ctx) -> ComInterface
[page 26] Create a COM object.

� create dispatch(ThreadOrServer, Class) -> ComInterface
[page 26] Create a COM object.

� create dispatch(ThreadOrServer, Class, Ctx) -> ComInterface
[page 26] Create a COM object.

� get object(ThreadOrServer, Name) -> ComInterface
[page 26] Get a COM object.

� get object(ThreadOrServer, Name, Interface) -> ComInterface
[page 26] Get a COM object.

� get dispatch(ThreadOrServer, Name) -> ComInterface
[page 26] Get a COM object.

� query interface(ComInterface, Iid)
[page 27] Get a COM interface from another.

� release(ComInterface)
[page 27] Release a COM interface.

16 Comet

Comet Reference Manual

� com call(ComInterface, MethodOffs)
[page 27] Call a COM method, using the V-table.

� com call(ComInterface, MethodOffs, Pars)
[page 27] Call a COM method, using the V-table.

� invoke(ComInterface, MethodName, Pars)
[page 28] Invoke a COM method, using the dispatch interface.

� invoke(ComInterface, MethodID, Pars)
[page 28] Invoke a COM method, using the dispatch interface.

� property get(ComInterface, MethodID)
[page 28] Get a COM property, using the dispatch interface.

� property get(ComInterface, MethodID, [Parameters])
[page 28] Get a COM property, using the dispatch interface.

� property get(ComInterface, MethodName)
[page 28] Get a COM property, using the dispatch interface.

� property get(ComInterface, MethodName, [Parameters])
[page 28] Get a COM property, using the dispatch interface.

� property put(ComInterface, MethodName, Value)
[page 28] Set a COM property, using the dispatch interface.

� property put(ComInterface, MethodName, [Parameters], Value)
[page 28] Set a COM property, using the dispatch interface.

� property put(ComInterface, MethodID, Value)
[page 28] Set a COM property, using the dispatch interface.

� property put(ComInterface, MethodID, [Parameters], Value)
[page 28] Set a COM property, using the dispatch interface.

� property put ref(ComInterface, MethodName, Value)
[page 28] Set a COM ref property, using the dispatch interface.

� property put ref(ComInterface, MethodName, [Parameters], Value)
[page 28] Set a COM ref property, using the dispatch interface.

� property put ref(ComInterface, MethodID, Value)
[page 28] Set a COM ref property, using the dispatch interface.

� property put ref(ComInterface, MethodID, [Parameters], Value)
[page 28] Set a COM ref property, using the dispatch interface.

� package interface(ThreadOrInterface, NewIntfNum) -> NewComInterface
[page 28] Convert an integer return from a COM call, to an interface tuple.

� get method id(DispatchInterface, MethodName) -> MethodID
[page 28] Convert a named method to its corresponding ID

� get interface info(ComInterface, VirtualOrDispatch) -> TypeInfo
[page 29] Return interface information from the COM TypeLib.

� get interface info(ComInterface, TypeName, VirtualOrDispatch) ->
TypeInfo
[page 29] Return interface information from the COM TypeLib.

� get typelib info(ComInterface) -> TypeLibInfo
[page 30] Return information on types in a COM type library.

� test(ComInterface) -> []
[page 30] Test function, break into Windows debugger.

� enum(ComInterface) -> ComEnum
[page 30] Get an iterator (called enum in COM) for a COM-object.

17Comet

Comet Reference Manual

� next(ComEnum) -> Variant
[page 30] Get the next item of a COM iterator.

� nexti(ComEnum) -> ComInterface
[page 30] Get the next item of a COM iterator.

� intfenum next(ComEnum) -> ComInterface
[page 30] Get the next item of a COM iterator.

� map enum(ComEnum, Fun)
[page 30] Map over an COM iterator.

� map enumi(ComEnum, IFun)
[page 30] Map over an COM iterator.

� map intfenumi(ComEnum, IFun)
[page 30] Map over an COM iterator.

18 Comet

Comet Reference Manual comet

comet
Application

Comet, the COM client for Erlang, is a way to call any COM-service in Windows from
an Erlang program. It is a combination of a gen server and a port program (or port
driver) that enables Erlang programs to call almost any COM-server.

Comet uses a gen server in the module erl com, together with a port program (or port
driver), to call COM-servers. Both the late-binding interface IDispatch and
early-binding virtual interfaces can be used. Erlang types are converted to COM types
and parameters are returned.

COM stands for Component Object Model, (or sometimes Common Object Model),
and is MicroSoft’s technique for component-based programming. It allows programs on
Windows systems, to call other programs and libraries across language boundaries. It is a
competitor to CORBA, but has other functionality too.

COM is available on all 32-bit Windows systems, such as NT 4, Windows 95, Windows
98 and Windows 2000. Comet can be used on any of these.

With Comet, an Erlang application can use (almost) any COM-service on Windows
from Erlang. Examples of what can be done include:

� Opening webpages with Internet Exporer (or Netscape)

� Reading and writing data from Excel Worksheet

� Reading and writing from Word

� Call C-code-libraries an efficient way, without the hassle of creating a port-driver

� Execute scripts in VBScript or JavaScript

Each of these examples are described in comet examples.

Using Comet for other purposes than those described in the examples, requires
knowledge of COM. COM is a complex topic, and there are a lot of books written
about it. Three decent references are given below. Some sections of the Comet
documentation assumes basic knowledge of COM.

Configuraion

Comet does not use any configuration parameters.

See Also

erl com(3), comet examples(3), some decent books on COM, such as: Inside COM, by
Dale Rogerson (ISBN: 1572313498) Essential COM, by Don Box (ISBN: 0201634465)
Mastering COM and COM+, by Rofail and Shohoud (ISBN: 0782123848)

19Comet

com gen Comet Reference Manual

com gen
Erlang Module

The com gen module generates stub code from COM type libraries. This makes it as
easy to use COM objects in erlang as in other languages with COM capabilies (such as
Visual Basic or Microsoft Java). OK, not quite as easy, but not really difficult anyway.

It also makes it possible to use the early-binding virtual interfaces available for most
COM classes. This is often way faster than going through the Dispatch/Invoke-interface.

The com gen module takes a COM interface and generates erlang source code files in
the current directory. It can generate just one type, or a whole typelib with several
types. There are options controlling the output.

These options are available, a (D) indicates a default option:

Option Explanation
===
fix names (D) Fix names to reasonable Erlang names

keep names Keeps the names as is, requiring ’

prefix A prefix added before each name

prefix these A list of names to prefix (empty means all)

also prefix these
Include the given names to be prefixed

dont prefix these
Remove the given names from the list of
names being prefixed

suffix A suffix added after each name

class suffix A suffix added after class names

fverbose, Lvlg The amount of feedback while generating
1 (D) Only write type library name
2 Write each type in a library
3 Write each member in a type (e.g. each function)

no optional Prevents generation of multiple functions with
optional arguments

virtual Generate virtual interfaces (dispatch interfaces are
generated with the suffix disp)

20 Comet

Comet Reference Manual com gen

no base virtual Generate virtual interfaces without including
functions in the interhited interface in each
interface module

The name fixing is made to make it easier to use COM object in erlang. It removes any
initial (underscores), and changes the first letter to lower case. Thus Connection ->
connection and EOF -> eOF. Without the name fixing (option keep names), each
COM name has to be surrounded with ’ (ticks).

Sometimes names are unappropriate or clashes with other names, e.g. Application ->
application. In those cases a prefix can be given.

By default, the following names will be prefixed with c : end, fun, when. Names that
might be added are application, receive, throw, etc.

Each interface generates a file with stubs that calls the appropriate erl com function. If
the function has optional in arguments, several version with different cardinality is
generated.

Virtual interfaces that inherits from other interfaces, are normally recursively generated
to include there base interface functions. This makes comet behave more like C++ or
Visual Basic when using interfaces with inheritance. (This can be turned off with the
no base virtual option.)

When generating from a library, lot’s of files will be created. All types in the library that
comet recognizes will be generated as files.

Note that the options for virtual or dispatch does not prevent dispatch-interfaces to be
generated, however they will have another name.

Often in COM, the same name is used for different members. To avoid name clashes,
com gen has a simple rule: properties are prefixed with put , get or put ref , and
methods are suffixed with (underscore). Name changes will be reported with warnings
from com gen.

The current default options for com gen are: use name fixing, prefix c , no suffix, class
suffix class, verbose level 1 (print type names, but not mebmers), generate multiple
functions for optional in parameters and prefer dispatch-interfaces.

Exports

gen enum(ComInterface, EnumName) -> fErlfilename, Hrlfilename, okg

gen enum(ComInterface, EnumName, Options) -> fErlfilename, Hrlfilename, okg

Types:

� EnumName = string()

The gen enum function is used to generate a COM enum from a type library. The enum
yields both a header file and a module with the same contents.

The header file contains the enum values as defines, for inclusion in an erlang module.

The module file contains the values as functions, and is useful when experimenting in
an erlang shell.

gen coclass(ClassName, ClsID) -> fok, Filenameg

21Comet

com gen Comet Reference Manual

gen coclass(ClassName, ClsID, Options) -> fok, Filenameg

Types:

� ClassName = ClsID = Filename = string()

This functions generates a stub for a COM class. Both the name and the GUID has to
be specified.

The erlang module only contatins create-functions for instance creation, and iid and
name.

Note that no checking is performed on the ClsID parameter. This function is rarely
used, instead generation is done from the type library with gen typelib.

gen interface(ComInterface, VirtualOrDispatch) -> fok, Filenameg

gen interface(ComInterface, VirtualOrDispatch, Options) -> fok, Filenameg

gen interface(ComInterface, IntfName, VirtualOrDispatch) -> fok, Filenameg

gen interface(ComInterface, IntfName, VirtualOrDispatch, Options) -> fok, Filenameg

Types:

� VirtualOrDispatch = virtual | dispatch
� IntfName, Filename = string()

This function generates stub files for an interface. For each of the methods (and
property functions) in the interface, a function is generated.

The VirtualOrDispatch flag is used to specify if virtual interfaces are to be generated.
If it virtual is given, virtual and dispatch versions are generated, the dispatch interfaces
have the suffix disp. If dispatch is given, only dispatch interfaces are generated,
without suffix.

The options can specify whether several versions for optional parameters is generated,
and if inherited functions should be included in virtual interfaces.

Note that currently, no optional out parameters provided in the interface stubs, to use
them, erl com:invoke has to be called directly.

22 Comet

Comet Reference Manual erl com

erl com
Erlang Module

The erl com module is a gen server that exposes an API to the port program and port
driver that is used to call COM services from Erlang.

There is a mapping between types in Erlang and types in COM. The following table
shows how Erlang types are converted by the port program to COM types.

COM type Erlang type Comment
-------- ----------- -------
VT I4 integer()
VT U4 integer()
VT BOOL true | false
VT BSTR string() Strings are

translated between
Ascii and Unicode

VT DATE finteger(), integer(), integer()g
Same format as returned
from now()

ffYear, Month, Dayg, fHour, Min, Secgg
Date and time,
with integers in tuples

VT PTR fvt *, outg Any output parameter,
including return value

VT I1 fvt i1, integer()g
VT U1 fvt u1, integer()g
VT I2 fvt i2, integer()g
VT U2 fvt u2, integer()g
VT R8 float()
VT R4 fvt r4, float()g
VT CY fvt cy, float()g Note that the precision

is lower on float()
VT DECIMAL fvt decimal, float()g -"-
VT UNKNOWN integer() Should be sent to

package interface
VT DISPATCH integer() -"-
other types unsupported

Some of the internal Erlang types map to types in COM. Most types in COM, however,
have no corresponding type in Erlang. In these cases, a special tuple is used, of the form
fComType, Valueg, where ComType is the corresponding type-name as defined in
ole2.h in the Microsoft Windows SDK.

In the functions below, the ComInterface is used. It is a tagged tuple, that identifies a
COM interface in the port driver.

23Comet

erl com Comet Reference Manual

ComInterface = fcom interface, pid(), ThreadNo, InterfaceNog
ThreadNo = InterfaceNo = integer()

Exports

start program() -> fok, Pidg

start program(ServerName) -> fok, Pidg

get program(ServerName) -> fok, Pidg

Types:

� Pid = pid()
� ServerName = atom()

Starts a new server, and initializes the COM port. Also starts one thread for running
COM calls.

This function starts the COM port as a port-program, in a separate process. The
erl com gen server uses (as usual in Erlang), a pipe to communicate with the port. This
has the benifit that a crash in the COM port, will not crash the emulator.

Each erl com server starts a separate port-program.

The server can be started with or without a registered name.

Normally, only one erl com server is started on a node, using the get program/1 call,
with possibly several threads for several clients. The only reason to start more than one
server on the same node is if one crashes, then the others will keep on running.

This way to launch Comet can be used when:

� The COM server is not 100% certain and crashproof.

� The overhead of using a separate port process is acceptable.

Since this way is safer, it is the preferred way of using comet.

start driver() -> fok, Pidg

start driver(ServerName) -> fok, Pidg

get driver(ServerName) -> fok, Pidg

Types:

� Pid = pid()
� ServerName = atom

Starts a new server, and initializes the COM port. Also starts one thread for running
COM calls.

The port is loaded as a port driver. This is the most efficient way to use COM, since the
com port resides in the same process as the Erlang emulator. However this also means
that crashing COM-objects will bring down the emulator.

The server can be started with or without a registered name. There is no advantage of
having two servers on the same node.

The get driver/1 call, gets a named process, or starts one if no one is running.

This way to launch Comet should only be used in two situations:

24 Comet

Comet Reference Manual erl com

� When the COM servers are in separate processes, where they will not bring down
the emulator in case of a crash.

� When the COM server is well-known and unlikely to crash, and the overhead of
using a separate port process is unacceptable.

get or start(Name, ProgramFlag) -> fok, Pidg

Types:

� Name = atom()
� ProgramFlag = program | driver

Calls get program or get driver, depening on the ProgramFlag parameter.

stop(ServerRef) -> ok

Types:

� ServerRef = Name | Pid
� Name = atom()
� Node = atom()
� Pid = pid()
� Thread = integer()
� Error = fcom error, Errcodeg
� Errcode = string()

Shuts the erl com server down. This will stop any threads. Interfaces should be released
before.

(Remember COM has no garbage collection!)

new thread(ServerRef | PrevComThread) -> ComThread

Types:

� ServerRef = Name | Pid
� PrevComThread = ComThread = fcom thread, ServerRef, ThreadNog
� Thread = integer()

Creates a new Windows thread that can be used to create and manipulate COM
objects. This is done automatically after erl com is started. One thread is created.

To allow COM calls to take time without blocking the emulator, erl com allows
multi-threaded execution. The maximum number of threads is 60. However, creating
more than a few is not useful for practical reasons.

When a COM-thread is created, it is suspended with a select function (which is called
WaitForMultipleObjects in the Win32 API). Calling any COM-functions from the
thread, is done by setting up a parameter buffer and signaling an event, that wakes up
the thread.

The return value is a tuple that includes Thread, a thread index that is an integer
between 0 and 60, which is unique for each thread, and allocated incrementally. Thread
index values will be reused if a thread is ended.

All COM calls are asynchronous from the emulators view, they are never called from
the emulator main thread, and thus only blocks the calling Erlang process.

end thread(ComThread) -> ok

25Comet

erl com Comet Reference Manual

Types:

� ComThread = fcom thread, ServerRef, ThreadNog
� ThreadNo = integer()

Ends a thread previously created with new thread. If the thread has any interfaces,
these must be released before the thread is ended, otherwise resource leakage can occur.
(Remember COM has no garbage collection!)

The thread is signaled and will exit. The thread index will be marked as available,
internally in the port program.

create object(ThreadOrServer, Class) -> ComInterface

create object(ThreadOrServer, Class, Ctx) -> ComInterface

create object(ThreadOrServer, Class, RefID) -> ComInterface

create object(ThreadOrServer, Class, RefID, Ctx) -> ComInterface

create dispatch(ThreadOrServer, Class) -> ComInterface

create dispatch(ThreadOrServer, Class, Ctx) -> ComInterface

Types:

� ThreadOrServer = ComThread | ServerRef
� ServerRef = Pid | Name
� Pid = pid()
� Name = atom()
� ComThread = fcom thread, Pid, ThreadNog
� Class = string()
� RefID = string()
� Ctx = integer()
� ThreadNo = integer()
� InterfaceNum = integer()

This function creates a COM object. It calls the Win32 API function,
CoCreateInstance. Refer to Windows documentation. The string Class can be either
a GUID for a class, or a COM program string. Values for the Ctx are defined in
erl com.hrl. If no Ctx is given, all flags are set to one (using any local service).

When successful, this function creates a COM object, and returns a tuple
ComInterface, which is a handle for the object, that is used for calling methods, and
releasing the object.

The create dispatch variant creates an object with the IDispatch interface. The
interface wanted can be specified in the RefID parameters.

get object(ThreadOrServer, Name) -> ComInterface

get object(ThreadOrServer, Name, Interface) -> ComInterface

get dispatch(ThreadOrServer, Name) -> ComInterface

Types:

� ThreadOrServer = ComThread | ServerRef
� ServerRef = Pid | Name
� Pid = pid()
� Name = atom()
� ComThread = fcom thread, Pid, ThreadNog

26 Comet

Comet Reference Manual erl com

� Name = string()
� Interface = string()

This function gets a COM object. It calls the Win32 API function, CoGetObject. Refer
to Windows documentation. The string name is a name that is used to get the object
using a moniker. The bindOptions parameter of CoGetObject always contains default
values.

When successful, this function references a COM object, and returns a tuple
ComInterface, which is a handle for the object, that is used for calling methods, and
releasing the object.

The get dispatch variant gets an object with the IDispatch interface. Other interface
wanted can be specified in the Interface parameter.

query interface(ComInterface, Iid)

Types:

� Iid = string()

Calls query interface on the given interface. Note that in COM, an object is also
considered an interface.

This function is used to see what interfaces an object implements and to do
down-casting.

release(ComInterface)

In COM, all interfaces are reference-counted. The release function decrements the
reference counter, and releases the interface (or object) if it reaches zero. Note that it is
important to release all objects created, and interfaces acquired. Otherwise resource
leaking will occur. Future versions of comet may provide for GC of COM objects.

This function in erl com also returns the ComInterface tuple, after release it is not
allowed to use the ComInterface.

com call(ComInterface, MethodOffs)

com call(ComInterface, MethodOffs, Pars)

Types:

� MethodOffs = integer()
� Pars = list()

This is the way to call a method in a virtual COM interface. Beware that the parameter
types must match the types in the COM interface function. Any type errors, or bad
parameter counts, will crash the COM driver.

Note that return values are handled with out parameters when using com call/3. (As
opposed to invoke/3).

This function should not be called explicitly, only from generated code (see com gen).

27Comet

erl com Comet Reference Manual

Exports

invoke(ComInterface, MethodName, Pars)

invoke(ComInterface, MethodID, Pars)

Types:

� MethodName = string()
� MethodID = integer()

There are two ways to call a method in a COM interface. A dispatch-interface, has a
method invoke, that is used to call methods. This method is intended for interpreted
languages. The invoke method is safer than com call, but also slower.

In many cases, the overhead of using invoke, is not significant. Therefore, it should be
preferred, since it has parameter checking, better error messages, etc.

The return vaule sometimes needs a bit of processing. In particular, an interface is
returned as an integer only, and the function package interface must be called (see
below).

property get(ComInterface, MethodID)

property get(ComInterface, MethodID, [Parameters])

property get(ComInterface, MethodName)

property get(ComInterface, MethodName, [Parameters])

To get a property value through the dispatch-interface, this function is used.

property put(ComInterface, MethodName, Value)

property put(ComInterface, MethodName, [Parameters], Value)

property put(ComInterface, MethodID, Value)

property put(ComInterface, MethodID, [Parameters], Value)

To set a property value through the dispatch-interface, this function is used.

property put ref(ComInterface, MethodName, Value)

property put ref(ComInterface, MethodName, [Parameters], Value)

property put ref(ComInterface, MethodID, Value)

property put ref(ComInterface, MethodID, [Parameters], Value)

To set a property reference through the dispatch-interface, this function is used.

package interface(ThreadOrInterface, NewIntfNum) -> NewComInterface

Types:

� ThreadOrInterface = ComThread | ComInterface

This function converts an interface number, as returned from erl com when
interface-returning COM calls are made, into an interface tuple. This interface tuple
can be used in other COM calls.

Note that this function is called in generated code (see com gen).

get method id(DispatchInterface, MethodName) -> MethodID

Types:

28 Comet

Comet Reference Manual erl com

� DispatchInterface = ComInterface
� MethodName = string()
� MethodID = integer()

Finds the ID of a method (or property), given its name. The interface must be a
dispatch-interface.

get interface info(ComInterface, VirtualOrDispatch) -> TypeInfo

get interface info(ComInterface, TypeName, VirtualOrDispatch) -> TypeInfo

Types:

� VirtualOrDispatch = virtual | dispatch
� TypeName = string()
� TypeInfo = EnumInfo | InterfaceInfo | ClassInfo
� EnumInfo = fenum, virtual, TypeId, [EnumMember...], [Subtype...]g
� TypeId = fName, IIDg

� Name = IID = string()
� EnumMember = fEnumName, EnumValueg
� EnumValue = integer()
� ClassInfo = fcoclass, virtual, TypeId, [], []g
� InterfaceInfo = DispatchInfo | VirtualInfo
� DispatchInfo = fdispatch, IntfKind, TypeId, [Func...], [Subtype...]g
� VirtualInfo = finterface, IntfKind, TypeId, [Func...], [Subtype...]g
� IntfKind = dual | dispatch | virtual
� Func = fFuncName, [InvKind], FuncType, IdOrOffset, [Parameter...], ReturnValueg
� EnumName = FuncName = string()
� InvKind = func | property get | property put | property put ref
� FuncType = virtual | purevirtual | nonvirtual | static | dispatch
� IdOrOffset = integer
� ReturnValue = ComType | void
� Parameter = fParamName, [ParamFlag...], ComType, DefaultValue
� ParamName = string()
� ParamFlag = in | out | lcid | retval | optional | has default | has custom data
� ComType = vt i4 | vt str | ... see above
� DefaultValue = fComType, Valueg | fg

� SubType = TypeId

How about that? If it looks complicated it’s because it is.

The get interface info is used to retrieve information from a COM type library. It is
actually a misnomer, it’s not just for interfaces, but also for enums and coclasses. Other
types of types are unsupported by comet (currently).

Given an interface and a type name, it fetches most of the information available in the
typelibrary, using the ITypeInfo and ITypeLib interfaces. It is kind of an erlang version
of the OLE/COM object viewer in the Windows SDK. An interface can be listed as a
dispatch or a virtual interface.

This function is used by com gen to provide erlang stub generation from type libraries.

To understand its output, refer to the COM documentation on ITypeInfo and ITypeLib,
or to a book.

29Comet

erl com Comet Reference Manual

There is currently no way in comet to retrieve information from a type-library without
creating at least one object from it. This might be improved in later releases.

get typelib info(ComInterface) -> TypeLibInfo

Types:

� TypeLibInfo = fTypeLibName, [TypeInfo...]g
� TypeInfo = fTypeKind, TypeName, IIDg

� TypeKind = enum | record | module | interface | dispatch | coclass | alias | union

The get typelib info function lists all types in a COM type library. It is used by
com gen to generate stub code.

Note that only enums, interfaces (including dispatch interfaces) and classes can be used
in get interface info.

test(ComInterface) -> []

The test function simply makes the COM port to a DebugBreak() Win32 API call.
This breaks into the debugger (such as Visual C++). It is really handy to debug COM
interfaces written in C. It is also useful for finding bugs in comet. (Luckily, there are no
bugs left in the code.)

enum(ComInterface) -> ComEnum

Types:

� ComEnum = ComInterface

This is a utility function that calls the DISPID ENUM property on a COM-object, and
returns the result as an interface, suitable for next and nexti.

next(ComEnum) -> Variant

nexti(ComEnum) -> ComInterface

intfenum next(ComEnum) -> ComInterface

Types:

� ComEnum = ComInterface

The next function calls the Next method on an IEnumVARIANT interface. The nexti
function does this too, and also packages the result with package interface (often the
Variant result is known to be an interface).

The intfenum next calls the Next method on an IEnumIUnknown, the only difference is
the size of the result.

When the iterator reaches the end, an empty tuple fg is returned, this is a value that
cannot be in a variant.

map enum(ComEnum, Fun)

map enumi(ComEnum, IFun)

map intfenumi(ComEnum, IFun)

Types:

� ComEnum = ComInterface
� Fun = fun(Variant)
� IFun = fun(ComInterface)

30 Comet

Comet Reference Manual erl com

These functions maps over a COM iterator (Com enum) and applies the given fun, the
values are collected in a list.

The interface functions (map enumi and map intfenumi) uses nexti to iterate. They
also releases the interface return from nexti. (This means that the value parameter of
the fun shouldn’t be returned or stored anywhere.)

31Comet

erl com Comet Reference Manual

32 Comet

List of Tables

1.1 Erlang Types and Their Corresponding COM Type . 2

1.2 Functions for dispatch interfaces . 3

33Comet

List of Tables

34 Comet

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

com_call/2
erl com , 27

com_call/3
erl com , 27

com gen
gen_coclass/2, 21
gen_coclass/3, 22
gen_enum/2, 21
gen_enum/3, 21
gen_interface/2, 22
gen_interface/3, 22
gen_interface/4, 22

create_dispatch/2
erl com , 26

create_dispatch/3
erl com , 26

create_object/2
erl com , 26

create_object/3
erl com , 26

create_object/4
erl com , 26

end_thread/1
erl com , 25

enum/1
erl com , 30

erl com
com_call/2, 27
com_call/3, 27
create_dispatch/2, 26
create_dispatch/3, 26
create_object/2, 26
create_object/3, 26
create_object/4, 26
end_thread/1, 25

enum/1, 30
get_dispatch/2, 26
get_driver/1, 24
get_interface_info/2, 29
get_interface_info/3, 29
get_method_id/2, 28
get_object/2, 26
get_object/3, 26
get_or_start/2, 25
get_program/1, 24
get_typelib_info/1, 30
intfenum_next/1, 30
invoke/3, 28
map_enum/2, 30
map_enumi/2, 30
map_intfenumi/2, 30
new_thread/1, 25
next/1, 30
nexti/1, 30
package_interface/2, 28
property_get/2, 28
property_get/3, 28
property_put/3, 28
property_put/4, 28
property_put_ref/3, 28
property_put_ref/4, 28
query_interface/2, 27
release/1, 27
start_driver/0, 24
start_driver/1, 24
start_program/0, 24
start_program/1, 24
stop/1, 25
test/1, 30

gen_coclass/2
com gen , 21

gen_coclass/3
com gen , 22

gen_enum/2

35Comet

Index of Modules and Functions

com gen , 21

gen_enum/3
com gen , 21

gen_interface/2
com gen , 22

gen_interface/3
com gen , 22

gen_interface/4
com gen , 22

get_dispatch/2
erl com , 26

get_driver/1
erl com , 24

get_interface_info/2
erl com , 29

get_interface_info/3
erl com , 29

get_method_id/2
erl com , 28

get_object/2
erl com , 26

get_object/3
erl com , 26

get_or_start/2
erl com , 25

get_program/1
erl com , 24

get_typelib_info/1
erl com , 30

intfenum_next/1
erl com , 30

invoke/3
erl com , 28

map_enum/2
erl com , 30

map_enumi/2
erl com , 30

map_intfenumi/2
erl com , 30

new_thread/1
erl com , 25

next/1
erl com , 30

nexti/1
erl com , 30

package_interface/2
erl com , 28

property_get/2
erl com , 28

property_get/3
erl com , 28

property_put/3
erl com , 28

property_put/4
erl com , 28

property_put_ref/3
erl com , 28

property_put_ref/4
erl com , 28

query_interface/2
erl com , 27

release/1
erl com , 27

start_driver/0
erl com , 24

start_driver/1
erl com , 24

start_program/0
erl com , 24

start_program/1
erl com , 24

stop/1
erl com , 25

test/1
erl com , 30

36 Comet

